Association of an RNA kissing complex analyzed using 2-aminopurine fluorescence.
نویسندگان
چکیده
The fluorescent probe, 2-aminopurine-2'-O-methyl riboside (2-AP) has been selectively incorporated at adenosine positions in stem-loops (so called R1inv and R2inv), derived from the ColE1 plasmid encoded RNA I and RNA II transcripts, that interact to form stable loop-loop kissing complexes and bind the RNA one modulator (Rom) protein, such that fluorescence-detected stopped-flow and equilibrium methods could be used to study the detailed mechanism of this RNA-RNA interaction. Formation of loop-loop kissing complexes between R1inv and R2inv hairpins, substituted with 2-AP at positions in the complementary loops, results in a 5-10-fold fluorescence emission decrease (F(max) = 370 nm), which provides a sensitive measure for the binding reaction. The 2-AP substituted complexes are found to have equilibrium binding properties (average K(D) = 2.6 +/- 1.7 nM) and affinity for Rom (average K(D) = 60 +/- 24 nM) that are similar to complexes formed with equivalent unlabeled hairpins. Using stopped-flow experiments, it was found that the 2-AP probes experienced at least three different microenvironments during association of the RNA complex, thus suggesting a kinetic intermediate in the kissing pathway. In contrast, dissociation of the complex was found to fit a single exponential decay (average k(off) = 8.9 x 10(-5) s(-1)). Consistent with these observations, a two-step mechanism for RNA loop-loop complex association is proposed in which the complementary loops of R1inv and R2inv first base pair to form the loop-loop helix (average k(1) = 0.13 microM(-1)s(-1)) in the initial encounter reaction, and subsequently isomerize to the final tertiary fold in a second slower step (average k(2) = 0.09 s(-1)), where the helical stacking around the junctions is optimized.
منابع مشابه
Dissecting structural transitions in the HIV-1 dimerization initiation site RNA using 2-aminopurine fluorescence.
A highly conserved 35 nucleotide RNA stem-loop, the dimerization initiation site (DIS), in the 5' untranslated region (UTR) of the human immunodeficiency virus type I (HIV-1) genome has been identified as the sequence primarily responsible for initiation of viral genome dimerization. The DIS initiates viral genome dimerization through a loop-loop 'kissing' interaction and is converted from an i...
متن کاملKinetics of transcription initiation at lacP1. Multiple roles of cyclic AMP receptor protein.
The cyclic AMP receptor protein (CRP) acts as a transcription activator at many promoters of Escherichia coli. We have examined the kinetics of open complex formation at the lacP1 promoter using tryptophan fluorescence of RNA polymerase and DNA fragments with 2-aminopurine substituted at specific positions. Apart from the closed complex formation and promoter clearance, we were able to detect t...
متن کاملA base change in the catalytic core of the hairpin ribozyme perturbs function but not domain docking.
The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structu...
متن کاملPyrrolo-C as a fluorescent probe for monitoring RNA secondary structure formation.
Pyrrolo-C (PC), or 3-[beta-D-2-ribofuranosyl]-6-methylpyrrolo[2,3-d]pyrimidin-2(3H)-one, is a fluorescent analog of the nucleoside cytidine that retains its Watson-Crick base-pairing capacity with G. Due to its red-shifted absorbance, it can be selectively excited in the presence of natural nucleosides, making it a potential site-specific probe for RNA structure and dynamics. Similar to 2-amino...
متن کاملRole of intersystem crossing in the fluorescence quenching of 2-aminopurine 2'-deoxyriboside in solution.
2-Aminopurine is a fluorescent probe widely used to study local dynamics as well as charge and energy transfer reactions in DNA/RNA. Despite its broad utilization, the nonradiative relaxation pathways responsible for the variation in its fluorescence quantum yield and fluorescence lifetime in different solvents are still under scrutiny. In this work we use steady-state absorption and emission s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 29 11 شماره
صفحات -
تاریخ انتشار 2001